Nueces Water Supply Corporation Annual Drinking Water Quality Report

For the Period of January 1 to December 31, 2017

(Consumer Confidence Report - PWS ID Number: TX1780052)

SPECIAL NOTICE

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immuno-compromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Our Drinking Water is Regulated

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. For more information regarding this report contact Carola Serrato, General Manager at (361) 592-1720.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the NWSC Business office at (361) 592-1720.

Nueces WSC is a purchased surface water system. Where do we get our drinking water?

Our drinking water is obtained from surface water sources. Nueces Water Supply Corporation is supplied by South Texas Water Authority, who purchases treated water from the City of Corpus Christi whose surface water sources are Lake Corpus Christi, Lake Texana, Choke Canyon Reservoir and Colorado River.

Source Water Assessments

TCEQ completed a Source Water Assessment for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions.

The system from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, contact NWSC

General Manager Carola Serrato. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at http://www.tceq.texas.gov/gis/swaview. Further details about sources and source water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/.

Water Loss: In the most recent Water Loss Audit submitted to the Texas Water Development Board for the period of January to December 2015, NWSC lost an estimated 13 million gallons of water.

Definitions & Abbreviations

Action Level (AL) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG) – The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg – Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL – million fibers per liter (a measure of asbestos)

mrem – millirems per year (a measure of radiation absorbed by the body)

na – not applicable

NTU – nephelometric turbidity units (a measure of turbidity)

pCi/L – picocuries per liter (a measure of radioactivity)

ppb – parts per billion, or micrograms per liter (μ g/L) – or one ounce in 7.350,000 gallons of water.

ppm – parts per million, or milligrams per liter (mg/L) – or one ounce in 7,350 gallons of water.

ppq – parts per quadrillion, or picograms per liter (pg/L)

ppt – parts per trillion, or nanograms per liter (ng/L)

Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water.

NWSC – Lead and Copper

Year	Lead & Copper	MCLG	Action Level (AL)	The 90 th Percentile	# of Sites Over AL	Unit	Violation	Likely Source of Contamination
2015	Copper	1.3	1.3	0.5241	0	ppm	N	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
2015	Lead*	0	15	4.3	1	ppb	N	Corrosion of household plumbing systems; erosion of natural deposits.

^{*}If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Nueces Water Supply Corporation 2017 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level or Average Detected	Range of Individual Sampl	es N	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids	2017	28	18.1 - 39.2		goal for	60	ppb	N	By-product of drinking
(HAA5)				•	he total				water disinfection.
Total	2017	82	34.3 - 112	No	goal for	80	ppb	Y	By-product of drinking
Trihalomethanes				tl	he total				water disinfection.
(TTHM)									
The value in the	Highest Level o	r Average Detected co	olumn is the highest	t average	e of all HA	AA5 sam	ple result	s and TTHM	sample results collected
at a location over	•								1
		Highest Level	Range of						
Inorganic	Collection	or Average	Individual						
Contaminants	Date	Detected	Samples N	ACLG	MCL	Units	Violation	Likely	Source of Contamination
Nitrate	2017	1	0.62 -0.88	10	10	ppm	N	Runoff fr	om fertilizer use; leaching
(measured as						rr			ic tanks, sewage; erosion
Nitrogen)								of natural	
								OI Huturui	deposits.
Disinfectant	Avera	ge Range of Level	ls		Unit of				
Residual	Year Leve	el Detected	MRDL MR	RDLG	Measure	Viola	tion	Likely Sou	arce of Contamination
Chloramine	2017 2.75	0.7 – 4.6	4	4	ppm	N	W	ater additive	used to control microbes.

Total Trihalomethanes (TTHM)

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver,

kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Violation Type	Violation Begin	Violation End	Violation Explanation	Steps to Correct Violation
MCL, LRAA	01/01/2017	03/31/2017	Water samples showed that the amount of this contaminant in our drinking water was above its standard (called a maximum contaminant level and abbreviated MCL) for the period indicated.	Increased flushing, use of flow switch to control chlorine injection at the Bishop East Pump Station.

City of Corpus Christi 2017 Water Quality Test Results

City of Corpus Christi - Inorganic Contaminants

_						
	Highest		_		Unit of	
Year	Average	Range	MCL	MCLG	Measure	Likely Source of Contaminant
2017	2.2	0.0 - 2.2	10	na	ppb	Erosion of natural deposits; runoff from orchards; runoff from
						glass and electronics production wastes.
2017	0.10	0.09 - 0.10	2	2	ppm	Discharge of drilling waste; erosion of natural deposits.
2017	0.55	0.17 - 0.72	1	0.80	ppm	By-product of drinking water disinfection.
2017	0.57	0.54 - 0.57	4	4	ppm	Erosion of natural deposits; water additive.
2017	0.44	0.23 - 0.59	10	10	ppm	Runoff from fertilizer use; erosion of natural deposits.
2017	130	120 - 140	na	na	ppb	Discharge from plastic and fertilizer factories.
2017	3.9	3.4 - 3.9	50	50	ppb	Discharge from petroleum and metal refineries; erosion of
					* *	natural deposits; discharge from mines
	2017 2017 2017 2017 2017 2017	Year Average 2017 2.2 2017 0.10 2017 0.55 2017 0.57 2017 0.44 2017 130	Year Highest Average Range 2017 2.2 0.0 - 2.2 2017 0.10 0.09 - 0.10 2017 0.55 0.17 - 0.72 2017 0.57 0.54 - 0.57 2017 0.44 0.23 - 0.59 2017 130 120 - 140	Year Highest Average Range MCL 2017 2.2 0.0 - 2.2 10 2017 0.10 0.09 - 0.10 2 2017 0.55 0.17 - 0.72 1 2017 0.57 0.54 - 0.57 4 2017 0.44 0.23 - 0.59 10 2017 130 120 - 140 na	Year Highest Average Range MCL MCLG 2017 2.2 0.0 - 2.2 10 na 2017 0.10 0.09 - 0.10 2 2 2017 0.55 0.17 - 0.72 1 0.80 2017 0.57 0.54 - 0.57 4 4 2017 0.44 0.23 - 0.59 10 10 2017 130 120 - 140 na na	Year Highest Average Range MCL MCLG Measure 2017 2.2 0.0 - 2.2 10 na ppb 2017 0.10 0.09 - 0.10 2 2 ppm 2017 0.55 0.17 - 0.72 1 0.80 ppm 2017 0.57 0.54 - 0.57 4 4 ppm 2017 0.44 0.23 - 0.59 10 10 ppm 2017 130 120 - 140 na na ppb

City of Corpus Christi - Organic Contaminants

		Highest				Unit of	
Constituent	Year	Average	Range	MCL	MCLG	Measure	Likely Source of Contaminant
Atrazine	2017	0.20	0.13 - 0.33	3	3	ppb	Runoff from herbicide used on row crops.

City of Corpus Christi – Synthetic Organic Contaminants

		Highest				Unit of	
Constituent	Year	Average	Range	MCL	MCLG	Measure	Likely Source of Contaminant
Di (2-Ethylhexyl)	2017	2.0	na	6.0	na	ppb	Discharge from rubber chemical factories.
Phthalate							
Metolachlor	2017	0.42	0.14 - 0.56	na	na	ppb	Runoff from herbicide use.

City of Corpus Christi – Turbidity

	Highest Single	Lowest % of Samples	Entry Point	Single Measurement	
Year/Constituent	Measurement	Meeting Limits	Limit (TT)	Limit (TT)	Likely Source of Contaminant
2017 Plant 1 (NTU)	0.36	99.5	≤0.3	1.0	Soil runoff.
2017 Plant 2 (NTU)	0.94	99.5	≤0.3	1.0	Soil runoff.

Turbidity has no health effects but can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

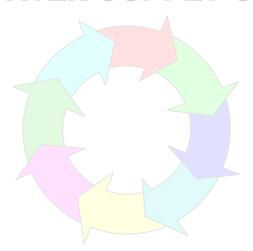
City of Corpus Christi – Cryptosporidium Monitoring

Constituent	Year	Highest Monthly % of Positive Samples	MCLG	Unit of Measure	Likely Source of Contaminant
Cryptosporidium	2017	0	0	Total (Oo) cysts/L	Naturally present in the environment.

Cryptosporidium is of great concern in public water systems that treat surface water for drinking water sources. Resistant to disinfectants, Cryptosporidium can cause gastrointestinal illness in individuals who consume contaminated water. The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) is required by Congress in order to increase protection from microbial contaminants such as Cryptosporidium. Under this rule, water systems must conduct monthly Cryptosporidium sampling over a two year span. The City of Corpus Christi began sampling in April 2015.

City of Corpus Christi - Radioactive Contaminants

Constituent	Year	Highest Average	Range	MCL	MCLG	Unit of Measure	Likely Source of Contaminant
Gross Beta Particle	2017	8.1	6.6 - 8.1	50.0	0	pCi/L	Naturally occurring; byproduct of
Activity							oil/gas production and mining.
Gross Alpha, Excluding	2017	< 3.0	na	15.0	0	pCi/L	Erosion of natural deposits.
Radon & Ura							
Gross Alpha, Including	2017	< 3.0	na	15.0	0	pCi/L	Erosion of natural deposits.
Radon & Ura							
Radium-228	2017	<1.0	na	5.0	0	pCi/L	Erosion of natural deposits.
Combined Uranium	2017	<1.0	na	30.0	0	ppb	Erosion of natural deposits.
Total Chromium	2017	<10	na	100	100	ppb	Discharge from steel and pulp mills;
							erosion of natural deposits.


City of Corpus Christi – Unregulated Contaminant Monitoring Rule 3 (UCMR3)

		0		· ·	· ·
Screening Survey List	Year	Average	Range	Unit of Measure	MRL (Minimum Reporting Level
Molybdenum	2014	1.2	1.2 - 1.3	ppb	1
Strontium	2014	339	280 - 330	ppb	0.3
Vanadium	2014	6.3	5.5 - 7.0	ppb	0.2
Chromium-Hexavalent	2014	0.05	0.03 - 0.08	ppb	0.03
Chlorate	2014	124	20 - 210	ppb	20

City of Corpus Christi - Secondary and Other Constituents Not Associated with Adverse Health Effects

orty or corpus	: ·	10 0 0 0 0	J		0 0 0 0	TION THE POLICE WITH THE VELOCITY ELICEDS
		Highest			Unit of	
Constituent	Year	Average	Range	MCL	Measure	Likely Source of Contaminant
Aluminum	2017	0.17	0.14 - 0.17	0.2	ppm	Abundant naturally occurring element.
Bicarbonate	2017	155	146 - 155	na	ppm	Corrosion of carbonate rocks such as limestone.
Calcium	2017	53.2	49 - 53.2	na	ppm	Abundant naturally occurring element.
Chloride	2017	94	91 – 94	300	ppm	Abundant naturally occurring element; used in water purification.
Hardness as CaCO3	2017	162	150 - 162	na	ppm	Naturally occurring calcium and magnesium.
Magnesium	2017	7.11	6.73 - 7.11	na	ppm	Abundant naturally occurring element.
Manganese	2017	0.0025	na	0.05	ppm	Abundant naturally occurring element.
Nickel	2017	0.0019	0.0015-0.0019	na	ppm	Erosion of natural deposits.
Potassium	2017	8.45	8.40 - 8.45	na	ppm	Abundant naturally occurring element.
Sodium	2017	66	62.5 - 66	na	ppm	Erosion of natural deposits; oil field by-product.
Sulfate	2017	62	52 - 62	300	ppm	Naturally occurring; oil field by-product.
Total Alkalinity	2017	133	120 - 152	na	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2017	393	379 – 393	1000	ppm	Total dissolved mineral constituents in water.

NUECES WATER SUPPLY CORPORATION

2017 DRINKING WATER QUALITY REPORT

Public Participation Opportunity

Date: Monday through Friday Time: 8:00 a.m. – 5:00 p.m.

Location: South Texas Water Authority's Office, 2302 E. Sage Rd., Kingsville, Texas

Phone No: (361) 592-1720

En Español

Este reporte incluye información importante sobre el agua para tomar. Para asistencía en español, favor de llamar al telefono (361) 592-1720.